Purpose of a Model
Models are representations that can aid in defining, analyzing, and communicating a set of concepts. System models are specifically developed to support analysis, specification, design, verification, and validation of a system, as well as to communicate certain information. One of the first principles of modeling is to clearly define the purpose of the model. Some of the purposes that models can serve throughout the system life cycle are
• Characterizing an existing system.
• Mission and system concept formulation and evaluation
• System design synthesis and requirements flowdown
• Support for system integration and verification
• Support for training
• Knowledge capture and system design evolution
Indicators of an Effective Model
When modeling is done well, a model’s purposes are clear and well-defined. The value of a model can be assessed in terms of how effectively it supports those purposes. The remainder of this section and the topics Types of Models, System Modeling Concepts, and Modeling Standards describe indicators of an effective model (Friedenthal, Moore, and Steiner 2009).
Model Scope
The model must be scoped to address its intended purpose. In particular, the types of models and associated modeling languages selected must support the specific needs to be met. For example, suppose models are constructed to support an aircraft’s development. A system architecture model may describe the interconnection among the airplane parts, a trajectory analysis model may analyze the airplane trajectory, and a fault tree analysis model may assess potential causes of airplane failure. For each type of model, the appropriate breadth, depth, and fidelity should be determined to address the model’s intended purpose. The model breadth reflects the system requirements coverage in terms of the degree to which the model must address the functional, interface, performance, and physical requirements, as well as other non-functional requirements, such as reliability, maintainability, and safety. For an airplane functional model, the model breadth may be required to address some or all of the functional requirements to power up, takeoff, fly, land, power down, and maintain the aircraft’s environment.
The model’s depth indicates the coverage of system decomposition from the system context down to the system components. For the airplane example, a model’s scope may require it to define the system context, ranging from the aircraft, the control tower, and the physical environment, down to the navigation subsystem and its components, such as the inertial measurement unit; and, perhaps down to lower-level parts of the inertial measurement unit.
The model’s fidelity indicates the level of detail the model must represent for any given part of the model. For example, a model that specifies the system interfaces may be fairly abstract and represent only the logical information content, such as aircraft status data; or, it may be much more detailed to support higher fidelity information, such as the encoding of a message in terms of bits, bytes, and signal characteristics. Fidelity can also refer to the precision of a computational model, such as the time step required for a simulation.
Indicators of Model Quality
The quality of a model should not be confused with the quality of the design that the model represents. For example, one may have a high-quality, computer-aided design model of a chair that accurately represents the design of the chair, yet the design itself may be flawed such that when one sits in the chair, it falls apart. A high quality model should provide a representation sufficient to assist the design team in assessing the quality of the design and uncovering design issues.
Model quality is often assessed in terms of the adherence of the model to modeling guidelines and the degree to which the model addresses its intended purpose. Typical examples of modeling guidelines include naming conventions, application of appropriate model annotations, proper use of modeling constructs, and applying model reuse considerations. Specific guidelines are different for different types of models. For example, the guidelines for developing a geometric model using a computer-aided design tool may include conventions for defining coordinate systems, dimensioning, and tolerances.